upsertFromHuggingFace
Inserts or updates vectors from a HuggingFace dataset.
upsertFromHuggingFace(
datasetsName: string,
options?: {
embeddingColumn?: string
metadata?: Record<string, any>
}
): Promise<string[]>
Reference
import { myVectorStore } from "#elements";
export default async function () {
const count = await myVectorStore.upsertFromHuggingFace(
"fka/awesome-chatgpt-prompts",
{ embeddingColumn: "prompt" }
);
console.log(`${count} vectors upserted`);
}
Parameters
datasetsName
: The name of the Hugging Face dataset to extract content from.options
: Optional configuration parameters, including:embeddingColumn
: (optional) The column in the dataset to use for embeddings. If not provided, the method will attempt to convert the entire dataset.metadata
: (optional) The metadata to associate with the vectors.
Returns
Promise of an array of IDs of the upserted vectors.
Caveats
- This method will insert a new vector if the
datasetsName
does not exist, or update the existing vector if thedatasetsName
exists. - You can query all the results by filtering the metadata field
source-by-babel
todatasetsName
.